The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: a systematic review and meta-analysis

Arthur Eumann Mesas, Luz M Leon-Muñoz, Fernando Rodríguez-Artalejo, and Esther Lopez-Garcia

ABSTRACT
Background: The effect of coffee and caffeine on blood pressure (BP) and cardiovascular disease (CVD) in hypertensive persons is uncertain.
Objective: The objective was to summarize the evidence on the acute and longer-term effects of caffeine and coffee intake on BP and on the association between habitual coffee consumption and risk of CVD in hypertensive individuals.
Design: A systematic review and meta-analysis of publications identified in a PubMed and EMBASE search up to 30 April 2011 was undertaken. Data were extracted from controlled trials on the effect of caffeine or coffee intake on BP change and from cohort studies on the association between habitual coffee consumption and CVD.
Results: In 5 trials, the administration of 200–300 mg caffeine produced a mean increase of 8.1 mm Hg (95% CI: 5.7, 10.6 mm Hg) in systolic BP and of 5.7 mm Hg (95% CI: 4.1, 7.4 mm Hg) in diastolic BP. The increase in BP was observed in the first hour after caffeine intake and lasted ≥3 h. In 3 studies of the longer-term effect (2 wk) of coffee, no increase in BP was observed after coffee was compared with a caffeine-free diet or was compared with decaffeinated coffee. Last, 7 cohort studies found no evidence of an association between habitual coffee consumption and a higher risk of CVD.
Conclusions: In hypertensive individuals, caffeine intake produces an acute increase in BP for ≥3 h. However, current evidence does not support an association between longer-term coffee consumption and increased BP or between habitual coffee consumption and an increased risk of CVD in hypertensive subjects. Am J Clin Nutr doi: 10.3945/ajcn.111.016667.

INTRODUCTION
The association between coffee consumption and BP among normotensive individuals has been widely investigated. In a review of controlled trials, Nurminen et al (1) reported an acute increase in both SBP and DBP in the hours after the intake of caffeine; however, results on the effect of caffeine intake during ≥7 d were inconclusive. Also in a meta-analysis of 11 controlled trials that met many quality criteria, Jee et al (2) reported that coffee consumption for≥1 d led to a slight increase in BP. Similarly, in a subsequent meta-analysis of randomized controlled trials of coffee or caffeine intake for ≥7 d, Noordzij et al (3) concluded that both interventions raised BP, although the effect of coffee was much smaller than that of caffeine. In contrast, cohort studies have found an association of habitual coffee consumption with either an increased risk of hypertension (4–7) or a decreased risk (8, 9). Last, although recent coffee consumption may transiently increase the risk of acute myocardial infarction (10) and stroke (11), particularly among infrequent drinkers, longitudinal studies suggest that habitual coffee consumption does not increase the long-term risk of CVD (12, 13).
Unfortunately, the effect of coffee and caffeine on BP and CVD among individuals with hypertension is also uncertain. This is a relevant issue because, in these patients, even a slight increase in BP may raise it above levels considered safe. Moreover, coffee consumption might reduce the effectiveness of drug treatments for hypertension. Thus, this information would allow for an evidence-based clinical recommendation and for improving BP control in hypertensive patients. Of note, however, is that the most widely disseminated clinical guidelines on hypertension management do not comment on coffee consumption in the lifestyle recommendations (14, 15). Last, to our knowledge, no comprehensive and systematic overview of these topics has been published recently.

Thus, this article has systematically reviewed the studies on the acute and longer-term effects of coffee and caffeine intake on BP and on the association between habitual coffee consumption and risk of CVD among hypertensive individuals.

METHODS
This review has followed the recommendations of the PRISMA statement (16) and the MOOSE statement (17), as appropriate.
Literature search

A PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and EMBASE (http://www.embase.com) search up to 30 April 2011 was conducted by using the key terms (words in the title or abstract of the manuscript) “coffee,” “caffeine,” “hypertension,” “hypertensive,” “hypertensives,” “high blood pressure,” “blood pressure,” and “mortality” and the CVD-related terms “ischemic heart disease,” “myocardial infarction,” “angina pectoris,” “arrhythmia,” “atrial fibrillation,” “stroke,” “heart failure,” “coronary heart disease,” “coronary bypass,” and “coronary angioplasty.” The complete PubMed and EMBASE searches are shown elsewhere (see Supplemental File 1 under “Supplemental data” in the online issue). Reference lists in articles retrieved from the electronic search were also scanned.

Study selection and data extraction

Two investigators (AEM and EL-G) independently selected the studies and extracted the data, and discrepancies were resolved by consensus. To examine the effect of coffee or caffeine consumption on change in BP, we selected controlled clinical trials, either randomized or nonrandomized, in which participants had an SBP ≥140 mm Hg and/or a DBP ≥90 mm Hg (18–25) or who were identified as having mild (26) or mild-to-moderate hypertension (27, 28). Trials with a co-intervention on other risk and antihypertensive drugs were included. As was done in a previous review (3), the studies were classified into 2 groups, according to whether duration of coffee or caffeine intake was <1 wk (indicating an acute effects) or ≥1 wk (indicating longer-term effects).

To explore the association between habitual coffee consumption and risk of CVD in hypertensive individuals, we selected cohort studies in which the outcome variables were CVD incidence or mortality. Both cohort studies of hypertensive individuals and larger cohorts that presented results in a subgroup of hypertensive individuals were included.

Quality assessment

The clinical trials were assessed to determine whether they were randomized, whether the intervention was blinded, whether losses to follow-up were identified, and whether each BP reading was made at least twice. The cohort studies were assessed to determine whether the diagnosis of hypertension was based on self-reports or measurements, whether repeated measurements of coffee consumption were made during follow-up, whether losses to follow-up were identified, how morbidity and mortality of CVD were measured or validated, and the degree of adjustment for potential confounders, particularly other predictors of CVD risk and antihypertensive drugs.

Synthesis of the data

In each clinical trial, the net effect of coffee/caffeine on BP was calculated as the difference in mean SBP and DBP change between the intervention and control groups. In crossover designs, the effect of coffee/caffeine was calculated as the difference in BP between the intervention and control periods.

In the meta-analysis of clinical trials on the acute effects of coffee/caffeine on BP, each period of time with BP measurements after the administration of coffee/caffeine was considered as an independent stratum (<60, 60 to <120, and 120 to 180 min). When a study had more than one measurement in the same period of observation, we used the mean of those measurements. For example, in the study by Freestone and Ramsay (26), 3 strata were considered, because measures after caffeine intake were available for the first (mean BP change at 5, 15, and 30 min), second (BP change at 60 min), and third (BP change at 120 min) periods of observation in both the intervention and control groups. However, protocols a and b in the study by Potter et al (21) were considered as independent studies because they considered different times of caffeine abstinence before the intervention and included a different number of participants. Because none of the studies selected presented the SD of the mean BP in each stratum, it was estimated by using the following formula:

\[
SD_i = SEM_i \times (n_i)^{1/2} \quad (1)
\]

where \(SEM_i\) is the SEM in each stratum and \(n_i\) is the size of each stratum. In studies without information on SEM or other sources to calculate the SD (19, 26), the SEM was imputed in a standardized way by using the prognostic method (29) with the following formula:

\[
SEM_i^* = \frac{\sum_{i=1}^{k} SEM_i(n_i)^{1/2}}{k(n_j)^{1/2}} \quad (2)
\]

where \(k\) is the total number of strata.

In the crossover studies, the SD of BP change in each period (intervention and control) was calculated by using the following formula:

\[
SD_{change} = \left[\left(\frac{SD_{baseline}}{n} \right)^2 + \left(\frac{SD_{final}}{n} \right)^2 \right]^{1/2} - \left(2 \times R \times SD_{baseline} \times SD_{final} \right)^{1/2} \quad (3)
\]

where \(R\) is the correlation coefficient (30). Because none of the studies presented information on individuals to obtain \(R\), the most conservative estimate was assumed, a minimum correlation of 0.50. This value was used in a previous meta-analysis of the effect of coffee on BP (3).

Heterogeneity among studies was quantified by using the \(I^2\) statistic (31). To pool the results of trials of the acute effects of caffeine on BP, fixed-effects models were used when heterogeneity was low or absent (\(I^2 < 20\%\)); when heterogeneity was greater and it was considered appropriate to pool the results, random-effects models were used. A sensitivity analysis was performed by repeating the analyses after the studies that had the largest effect on the overall result were excluded. In addition, the analyses were stratified by caffeine dose (200, 250, or >250–300 mg), time of abstinence from caffeine before beginning the trial (9, 12, or 48 h), and antihypertensive treatment (yes or no) to examine the influence of these variables on the effect of caffeine on BP. Differences in results across strata were tested by using meta-regression models.

Possible publication bias was explored with Begg’s funnel plots (32) and with Egger’s regression asymmetry test (33) in studies with a sufficient number of observations to allow for
Clinical trials of the longer-term effects of coffee consumption on BP were grouped according to the type of comparison examined: coffee compared with caffeine-free diet, coffee compared with decaffeinated coffee, and comparisons of coffees with different amounts of CGA and HHQ. Because of the small number of available studies and their heterogeneity, it was not considered advisable to pool their results by using meta-analytic techniques.

RESULTS

The flow of articles from the initial search to final inclusion in this systematic review is shown in Figure 1. The search of PubMed, EMBASE, and reference lists identified a total of 438 articles, 330 of which were excluded because their title or abstract was not related to the study associations. Of the 108 articles retrieved for critical review, 86 referred to the effect of coffee/caffeine on BP. Of these, 75 were excluded because they did not provide data among hypertensive individuals, were literature reviews, or had other specific criteria for exclusion detailed elsewhere (see Supplemental File 2 under “Supplemental data” in the online issue). Accordingly, 5 studies on the acute effects and 6 studies on the longer-term effects of coffee/caffeine on BP were finally included. In addition, 40 studies were identified on the effects of coffee on CVD incidence or mortality. After the review articles were excluded (ie, those that did not provide specific data on hypertensive individuals and those with insufficient data), the review was based on 7 cohort studies.

Acute effects of caffeine on BP in hypertensive individuals

The characteristics of the 5 studies selected are shown in Table 1. All were conducted in English-speaking countries and included persons between 20 and 82 y of age who were habitual coffee drinkers. All of these studies had a crossover design. Study quality was heterogeneous. Three studies were randomized (18, 21, 27), and all of the studies were double-blind except for the oldest study (26). The BP measurements were based on ≥2 readings in 3 studies, but Freestone and Ramsay (26) and Vlachopoulos et al (27) did not report this information. No losses to follow-up were reported, although in the study by Potter et al (21) one person did not participate in the second protocol because of illness. The BP cutoffs to define hypertension varied among studies and were not reported in 2 studies (26,
<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Design</th>
<th>n</th>
<th>Age</th>
<th>Sex</th>
<th>Lifestyle/health status</th>
<th>Habitual coffee/caffeine intake before the trial</th>
<th>Criteria for inclusion as hypertensive</th>
<th>Antihypertensive medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute effect of caffeine intake (trials < 1 wk duration)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freestone and Ramsay (26), 1982</td>
<td>United Kingdom</td>
<td>C, X</td>
<td>16</td>
<td>30–65</td>
<td>M/F</td>
<td>Habitual smokers</td>
<td>4 cups/d</td>
<td>Mild HT</td>
<td>Yes</td>
</tr>
<tr>
<td>Potter et al (21), 1993</td>
<td>United Kingdom</td>
<td>R, DB, C, X</td>
<td>a: 8; b: 7</td>
<td>65–82</td>
<td>M/F</td>
<td>Nonsmokers with no history of IHD, stroke, diabetes, renal impairment, postural hypotension, anemia, or autonomic neuropathy</td>
<td>Coffee or tea drinkers</td>
<td>BP ≥160/95 mm Hg</td>
<td>No (antihypertensive therapy stopped 4 wk before)</td>
</tr>
<tr>
<td>Sung et al (19), 1994</td>
<td>United States</td>
<td>DB, C, X</td>
<td>18</td>
<td>30–45</td>
<td>M</td>
<td><1 pack cigarettes/d, <2 alcoholic beverages/d</td>
<td>1–8 cups/d</td>
<td>BP 140–160/90–105 mm Hg</td>
<td>No</td>
</tr>
<tr>
<td>Pincomb et al (18), 1996</td>
<td>United States</td>
<td>R, DB, C, X</td>
<td>24</td>
<td>20–39</td>
<td>M</td>
<td>Smoking <10 cigarettes/d, with no aerobic functional impairment during exercise, medication use, CVD, or chronic disease</td>
<td>50–800 mg caffeine/d</td>
<td>BP 146–160/90–99 mm Hg</td>
<td>No</td>
</tr>
<tr>
<td>Vlachopoulos et al (27), 2003</td>
<td>United States</td>
<td>R, DB, C, X</td>
<td>12</td>
<td>60 ± 3</td>
<td>M/F</td>
<td>1 current smoker, 1 with non-insulin-dependent diabetes, 2 with hyperlipidemia, 6 with a positive family history of premature CVD, and all with HT controlled with medication in the past 6 mo</td>
<td>Caffeine consumers</td>
<td>Mild-to-moderate HT</td>
<td>Yes</td>
</tr>
<tr>
<td>Longer-term effects of coffee intake trials (≥1 wk duration)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MacDonald et al (20), 1991</td>
<td>Scotland</td>
<td>R, DB, C, X</td>
<td>50</td>
<td>26–63</td>
<td>M/F</td>
<td>9 smokers with no biochemical, hematologic, electrocardiographic, or clinical abnormalities</td>
<td>≥3 cups/d</td>
<td>DBP 90–105 mm Hg</td>
<td>No</td>
</tr>
<tr>
<td>Rakic et al (22), 1999</td>
<td>Australia</td>
<td>R, C, P</td>
<td>27</td>
<td>≥50</td>
<td>M/F</td>
<td>Nonsmokers living in nursing homes with no diabetes mellitus, arrhythmia, heart failure, or renal disease</td>
<td>NA</td>
<td>BP 140–180/90–110 mm Hg and/or treatment of HT</td>
<td>Yes</td>
</tr>
</tbody>
</table>

(Continued)
TABLE 1 (Continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Design</th>
<th>n</th>
<th>Age</th>
<th>Sex</th>
<th>Lifestyle/health status</th>
<th>Habitual coffee/caffeine intake before the trial</th>
<th>Criteria for inclusion as hypertensive</th>
<th>Antihypertensive medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chikama et al (23), 2008<sup>a,b,c,d</sup></td>
<td>Japan</td>
<td>R, DB, C, P</td>
<td>60</td>
<td>20–65</td>
<td>M/F</td>
<td>No heavy smokers or heavy alcohol consumers; no caffeine- or coffee-hypersensitive or allergic persons; no severe liver, kidney, cerebrovascular, or heart disease; no endocrine disorders, metabolic disturbances, diabetes, or potential pregnancy</td>
<td>NA</td>
<td>BP 140–159/90–99 mm Hg</td>
<td>No</td>
</tr>
<tr>
<td>Yamaguchi et al (24), 2008<sup>a,b,c,d</sup></td>
<td>Japan</td>
<td>R, DB, C, P</td>
<td>183</td>
<td>30–65</td>
<td>M/F</td>
<td>No heavy smokers or alcohol abusers and no history of medication use for HT, hyperlipidemia, diabetes mellitus, stroke, CVD, or renal or liver dysfunction</td>
<td>NA</td>
<td>BP 140–155/90–97 mm Hg</td>
<td>No</td>
</tr>
<tr>
<td>Ochiai et al (25), 2009<sup>a,b,c,d</sup></td>
<td>Japan</td>
<td>R, DB, C, P</td>
<td>21</td>
<td>30–64</td>
<td>M/F</td>
<td>Vascular failure and ≥2 of the following risk factors related to hypertension: smoking, waist circumference, triglycerides, total cholesterol, lipoprotein, and blood sugar</td>
<td>NA</td>
<td>BP 140–159/≤100 mm Hg</td>
<td>No</td>
</tr>
</tbody>
</table>

¹ a, b, c, and d indicate different protocols in a study and are reported in detail in Figures 2 and 3 and in Table 3. BP, blood pressure; C, controlled; CVD, cardiovascular disease; DB, double-blinded; DBP, diastolic blood pressure; IHD, ischemic heart disease; NA, not available; P, parallel; R, randomized; X, crossover.

² 1 cup = 240 mL.
Moreover, participants in these 2 studies (26, 27) continued to take their antihypertensive medication, whereas patients in the other studies did not receive treatment. Participants abstained from coffee and caffeine consumption before the study for periods ranging from 9 to 48 h.

The meta-analysis of the acute effects of caffeine on SBP and DBP, respectively, grouped according to the time of observation (<60, 60 to <120, and 120 to 180 min) is shown in Figures 2 and 3. Certain assumptions were made in the meta-analysis. First, in the 2 studies in which caffeine doses were adjusted for body weight (18, 19), caffeine intake (mg) was estimated as the product of the dose/kg times the mean reported weight (19). Because weight was not reported by Pincomb et al (18), it was assumed to be 82 kg (mean value in white men aged 20–39 y in the United States) (35). Second, in the study by Potter et al (21), we used BP measured in the standing rather than in the supine position, because this is more frequent in clinical practice.

In all trials, 200–300 mg caffeine was administered (equivalent to ~1.5–2 cups filtered coffee). The overall change in SBP associated with caffeine intake was 8.14 mm Hg (95% CI: 5.68, 10.61 mm Hg). SBP increased by 7.43 mm Hg in the first 60 min after coffee intake and remained elevated at the same level in the following periods. No heterogeneity among studies was detected in SBP elevation, either in each time period or over time ($I^2 = 0.0\%$) (Figure 2).

Given the large contribution of the study by Pincomb et al (18) to the overall results (Figure 2), the analyses were repeated after this study was excluded; similar results were found. Moreover, in the stratified analyses, the effect of caffeine on SBP did not vary with caffeine dose in the range of 200 to 300 mg (Table 2).

For DBP, the overall change associated with caffeine intake was 5.75 mm Hg (95% CI: 4.09, 7.41 mm Hg). As for SBP, the increase in DBP was observed in the first 60 min and up to 3 h after caffeine intake (Figure 3). These results were obtained with random-effects models because some heterogeneity was observed in the results for the period 120–180 min ($I^2 = 36.1\%$). The heterogeneity is due to the larger increase in DBP observed in the study by Sung et al (19), which used higher doses of caffeine (300 mg) (Figure 3). The stratified and meta-regression analyses in Table 2 also suggest that DBP increased more in those who received >250 mg caffeine than in those who received smaller doses. The increase in DBP produced by caffeine did not vary with time of abstinence from caffeine before beginning the trial or with use of antihypertensive treatment (Table 2).

The Begg’s funnel plots constructed with the 9 observations on the effect of 250 mg caffeine did not suggest publication bias for any of the investigated outcomes.

Table 1: Meta-analysis of acute effects of caffeine on SBP

<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
<th>Caffeine abstinence pretreatment (hours)</th>
<th>Amount of caffeine (mg)</th>
<th>Time (minutes)</th>
<th>SBP at baseline (mm Hg)</th>
<th>SBP net change (mm Hg)</th>
<th>95% CI (mm Hg)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freestone (26)</td>
<td>16</td>
<td>9</td>
<td>200</td>
<td>60</td>
<td>137.0</td>
<td>8.00</td>
<td>(-5.51, 17.51)</td>
<td>4.59</td>
</tr>
<tr>
<td>Potter (21) a</td>
<td>8</td>
<td>48</td>
<td>250</td>
<td>60</td>
<td>137.0</td>
<td>8.00</td>
<td>(-5.51, 17.51)</td>
<td>4.59</td>
</tr>
<tr>
<td>Potter a</td>
<td>7</td>
<td>12</td>
<td>250</td>
<td>60</td>
<td>137.0</td>
<td>8.00</td>
<td>(-5.51, 17.51)</td>
<td>4.59</td>
</tr>
<tr>
<td>Pincomb (18)</td>
<td>24</td>
<td>12</td>
<td>270</td>
<td>60</td>
<td>137.0</td>
<td>8.00</td>
<td>(-5.51, 17.51)</td>
<td>4.59</td>
</tr>
<tr>
<td>Sung (19)</td>
<td>16</td>
<td>12</td>
<td>300</td>
<td>60</td>
<td>137.0</td>
<td>8.00</td>
<td>(-5.51, 17.51)</td>
<td>4.59</td>
</tr>
<tr>
<td>Vitekopoulos (27)</td>
<td>12</td>
<td>12</td>
<td>250</td>
<td>60</td>
<td>137.0</td>
<td>8.00</td>
<td>(-5.51, 17.51)</td>
<td>4.59</td>
</tr>
</tbody>
</table>

Sub-total ($I^2 = 0.0\%, \ p = 0.85$)

- **60 to <120 minutes**
- **120 to 180 minutes**
- **Total**

Figure 2. Meta-analysis of the acute effects of caffeine on SBP in hypertensive individuals, by time after caffeine intake. *The net change in SBP is the difference in SBP between the intervention period and the control period.* a Weights are from fixed-effects models. In Potter’s study, a indicates the protocol with a long caffeine abstinence period before the intervention, and b indicates the protocol with a short caffeine abstinence period before the intervention. NA, not available; SBP, systolic blood pressure.
the results on SBP or DBP. Moreover, the Egger’s test P value was 0.411 for SBP and 0.583 for DBP. Thus, the results of the Egger’s test did not support the existence of publication bias for the effect of 250 mg caffeine. Unfortunately, we had only 3 observations on the effect of 200 mg caffeine and 4 observations on the effect of 250–300 mg caffeine. Accordingly, a formal assessment of publications bias was not considered advisable for these caffeine doses.

Longer-term effects of coffee consumption on BP in hypertensive subjects

The characteristics of the 6 studies selected are shown in Table 1. The studies were conducted in different countries (20, 22, 28), with the 3 most recent studies carried out in Japan (23–25). All included persons of both sexes were aged ≥20 y. Four studies had a parallel design (22–25) and 2 were crossover studies (20, 28). The quality of the studies was high. All were randomized and double-blind, except for the study by Rakic et al (22), which did not report whether the intervention was blinded. Loss to follow-up was <10% in all studies, and in the study of Rakic et al (22) there were no losses. The BP values were based on the mean of 24-h ambulatory blood pressure monitoring in 3 studies (20, 22, 28), and on ≥2 BP readings in the remaining studies (23–25). The cutoff points to define hypertension were heterogeneous, and the oldest study (20) considered only the DBP value. The study subjects continued with antihypertensive medication in 2 studies (22, 28), and they abstained from coffee and caffeine during 1 or 2 wk beforehand in 4 studies (22, 24, 28).

The longer-term effects of coffee intake on BP are shown in Table 3. Two of the studies (20, 28) presented BP data only at the end of the intervention and control periods. Thus, in the study by MacDonald et al (20), baseline BP was assumed to be the same as BP at the end of the period with the normal diet. In the study by Eggertsen et al (28), the effect of caffeine on BP was estimated by comparing only the final values of BP between the treatment branches. The duration of the intervention varied from 2 to 12 wk. No increase in BP was observed when coffee intake was compared with the caffeine-free diet and when coffee intake was compared with the decaffeinated coffee.

Three studies examined the effect of drinking coffee containing different amounts of HHQ and/or CGA on BP. Chikama et al (23) compared the effect of coffee with reduced HHQ with that of normal coffee. In comparison with normal coffee, the reduced-HHQ coffee resulted in a decrease in BP after 4–12 wk of consumption. In the second study, Yamaguchi et al (24) studied the effect of coffee without HHQ and with different

FIGURE 3. Meta-analysis of the acute effects of caffeine on DBP in hypertensive individuals, by time after caffeine intake.

*The net change in DBP is the difference in systolic blood pressure between the intervention period and the control period. *Weights are from random-effects models. In Potter’s study, a indicates the protocol with a long caffeine abstention period before the intervention, and b indicates the protocol with a short caffeine abstention period before the intervention. DBP, diastolic blood pressure; NA, not available.
concentrations of CGA in comparison with normal coffee. The coffee without HHQ decreased BP, although the results did not show a clear dose-response with the concentration of CGA (24). Last, Ochiai et al (25) observed that, in comparison with a cup of coffee with a reduced concentration of HHQ and no CGA, a cup of coffee with a reduced concentration of HHQ but elevated concentration of CGA seemed to decrease SBP but did not modify DBP after 4, 6, and 8 wk of intervention.

Habitual coffee consumption and risk of CVD in hypertensive subjects

Five cohort studies (13, 36–39) were conducted in the United States, one in Finland (40), and the other in Sweden (41). Except for one study designed as a cohort of hypertensive individuals (36), the rest were large cohort studies in different populations with no clinical inclusion criterion, in which a subcohort developed hypertension during follow-up. Three cohorts included persons aged ≥30 y (13, 36, 38), and the others included those older than 48 y (37, 40, 41) and 64 y (39). The study quality was good. In 5 studies, hypertension was defined on the basis of measured BP values (36–40). Two studies were based on self-reported history of hypertension (41) or on a diagnosis of hypertension reported by nurses and were therefore very reliable (13). Habitual consumption of coffee was reported at the beginning of follow-up and in one study (13) was updated every 4 y. In all studies, information on CVD was confirmed by review of the medical record or death certificate. Length of follow-up varied from 4 to 25 y. Finally, in all cases, the results were adjusted for the main confounding factors.

The studies included in this section examined different endpoints (Table 4). The 3 studies on CVD mortality found no excess risk of death associated with coffee or caffeinated drinks in hypertensive individuals (36, 38, 39). In contrast, the studies on coffee consumption and risk of stroke in hypertensive individuals yielded inconsistent results. Hakim et al (37) found that those who consumed ≥20 oz coffee/d (600 mL coffee/d), ~4 cups, had double the risk of thromboembolic stroke than did noncoffee drinkers; however, Lopez-García et al (13) and Larsson et al (41) found no excess risk, even in those with higher consumption (≥4 cups/d). Finally, Larsson et al (40) observed a lower risk of cerebral infarction in those who consumed ≥6 cups/d than in those with lower consumption (<2 cups/d). Only one study examined the effect of coffee on heart valve disease, and no association was found (39).

DISCUSSION

This review has shown that, in hypertensive patients, caffeine intake of 200 to 300 mg produced an important increase in BP, which was observed in the first 60 min after intake and persisted up to 180 min afterward. In contrast, drinking coffee for 2 wk did not appear to increase BP. These results are based on high-quality clinical trials. Finally, the cohort studies reviewed do not support an association between habitual coffee consumption and a higher risk of CVD in hypertensive individuals.

These results are unique because they extend the evidence of the effect of coffee on BP to hypertensive individuals. The most comprehensive review to date on the acute effects of caffeine in normotensive individuals reported BP elevations from 2 to 12 mm Hg for SBP and from 3 to 11 mm Hg for DBP (the results of the studies were not pooled statistically) (1). In our study, hypertensive individuals who received caffeine showed an overall increase of 8 mm Hg in SBP and of nearly 6 mm Hg in DBP. Thus, caffeine has a comparable effect on normotensive and hypertensive individuals.

In considering the longer-term effects of coffee consumption on normotensive individuals, 2 previous reviews showed elevated BP: 2.4 mm Hg in SBP and 1.2 mm Hg in DBP in the study by Jee et al (2) and 2.0 mm Hg in SBP and 0.7 mm Hg in DBP in the study by Noordzij et al (3). In our study, long-term coffee consumption did not show a clear increase in BP in hypertensive
TABLE 3
Longer-term effects (≥1 wk) of coffee consumption on BP in hypertensive individuals

<table>
<thead>
<tr>
<th>Reference</th>
<th>No. of subjects</th>
<th>Coffee/caffeine abstinence before treatment</th>
<th>Amount of coffee (intervention)</th>
<th>Duration of the intervention</th>
<th>SBP</th>
<th>DBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacDonald et al (20)</td>
<td>50</td>
<td>No</td>
<td>≥3</td>
<td>NA</td>
<td>Instant</td>
<td>2</td>
</tr>
<tr>
<td>Rakic et al (22)</td>
<td>27</td>
<td>2 wk</td>
<td>5</td>
<td>300</td>
<td>Instant</td>
<td>2</td>
</tr>
<tr>
<td>MacDonald et al (20)</td>
<td>50</td>
<td>No</td>
<td>≥3</td>
<td>NA</td>
<td>Instant</td>
<td>2</td>
</tr>
<tr>
<td>Eggertsen et al (28)</td>
<td>23</td>
<td>2 wk</td>
<td>3–4</td>
<td>NA</td>
<td>Instant</td>
<td>2</td>
</tr>
<tr>
<td>Reduced HHQ coffee</td>
<td>(active)/coffee (control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chikama et al (23)</td>
<td>60</td>
<td>No</td>
<td>1</td>
<td>77 (active group), 75 (control group)</td>
<td>Instant coffee with reduced HHQ</td>
<td>4</td>
</tr>
<tr>
<td>Chikama et al (23)</td>
<td>60</td>
<td>No</td>
<td>1</td>
<td>77 (active group), 75 (control group)</td>
<td>Instant coffee with reduced HHQ</td>
<td>8</td>
</tr>
<tr>
<td>Chikama et al (23)</td>
<td>60</td>
<td>No</td>
<td>1</td>
<td>77 (active group), 75 (control group)</td>
<td>Instant coffee with reduced HHQ</td>
<td>10</td>
</tr>
<tr>
<td>Chikama et al (23)</td>
<td>60</td>
<td>No</td>
<td>1</td>
<td>77 (active group), 75 (control group)</td>
<td>Instant coffee with reduced HHQ</td>
<td>12</td>
</tr>
<tr>
<td>HHQ-free coffee with different levels of CGA/coffee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yamaguchi et al (24)</td>
<td>183</td>
<td>2 wk</td>
<td>1</td>
<td>75–81</td>
<td>Instant HHQ-free coffee with zero dose of CGA</td>
<td>4</td>
</tr>
<tr>
<td>Yamaguchi et al (24)</td>
<td>183</td>
<td>2 wk</td>
<td>1</td>
<td>75–81</td>
<td>Instant HHQ-free coffee with low dose of CGA</td>
<td>4</td>
</tr>
<tr>
<td>Yamaguchi et al (24)</td>
<td>183</td>
<td>2 wk</td>
<td>1</td>
<td>75–81</td>
<td>Instant HHQ-free coffee with middle dose of CGA</td>
<td>4</td>
</tr>
</tbody>
</table>

(Continued)
TABLE 3 (Continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>No. of subjects</th>
<th>Coffee/caffeine abstinence before treatment</th>
<th>Amount of coffee (intervention)</th>
<th>Duration of the intervention</th>
<th>SBP Baseline</th>
<th>Net change f (95% CI)</th>
<th>DBP Baseline</th>
<th>Net change f (95% CI)</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamaguchi et al (24)d</td>
<td>183</td>
<td>2 wk</td>
<td>1 Caffeine doses</td>
<td>Instant HHQ-free coffee with high dose of CGA</td>
<td>4</td>
<td>144.1</td>
<td>91.2</td>
<td>−3.3 (−5.6, −1.1)</td>
<td>HHQ-free coffee consumption decreased BP</td>
</tr>
<tr>
<td>Reduced HHQ coffee and elevated CGA (active)/reduced HHQ and reduced CGA coffee (control)</td>
<td>21</td>
<td>No</td>
<td>1 79 (active group), 59 (control group)</td>
<td>Instant coffee with reduced HHQ and elevated CGA content</td>
<td>2</td>
<td>147.3</td>
<td>88.4</td>
<td>3.5 (−2.3, 9.3)</td>
<td>Reduced HHQ coffee with ↑CGA consumption decreased SBP but did not modify DBP</td>
</tr>
<tr>
<td>Ochiai et al (25)a</td>
<td>21</td>
<td>No</td>
<td>1 79 (active group), 59 (control group)</td>
<td>Instant coffee with reduced HHQ and elevated CGA content</td>
<td>4</td>
<td>147.3</td>
<td>88.4</td>
<td>−2.1 (−8.5, 4.3)</td>
<td>Reduced HHQ coffee with ↑CGA consumption decreased SBP but did not modify DBP</td>
</tr>
<tr>
<td>Ochiai et al (25)b</td>
<td>21</td>
<td>No</td>
<td>1 79 (active group), 59 (control group)</td>
<td>Instant coffee with reduced HHQ and elevated CGA content</td>
<td>6</td>
<td>147.3</td>
<td>88.4</td>
<td>−7.1 (−14.4, 0.2)</td>
<td>Reduced HHQ coffee with ↑CGA consumption decreased SBP but did not modify DBP</td>
</tr>
<tr>
<td>Ochiai et al (25)c</td>
<td>21</td>
<td>No</td>
<td>1 79 (active group), 59 (control group)</td>
<td>Instant coffee with reduced HHQ and elevated CGA content</td>
<td>8</td>
<td>147.3</td>
<td>88.4</td>
<td>−2.9 (−10.1, 4.3)</td>
<td>Reduced HHQ coffee with ↑CGA consumption decreased SBP but did not modify DBP</td>
</tr>
</tbody>
</table>

f In MacDonald et al’s study, a and b indicate protocols with different comparisons in the control period. In Yamaguchi et al’s study, a, b, c, and d indicate protocols with different interventions. In Chikama et al’s and Ochiai et al’s studies, a, b, c and d indicate protocols with different durations. BP, blood pressure; CGA, chlorogenic acid; DBP, diastolic blood pressure; HHQ, hydroxyhydroquinone; NA, not available; SBP, systolic blood pressure.

a 1 cup = 240 mL or 8 ounces.

f The net change in BP is the difference in BP changes between the treated group and the control group for parallel trials and the difference in BP between the intervention period and the control period for crossover trials.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Country, duration of follow-up</th>
<th>Population data</th>
<th>BP criteria for inclusion</th>
<th>Exposure/categories</th>
<th>Outcome (n)</th>
<th>Confounding factors</th>
<th>Multivariate-adjusted results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin</td>
<td>United States, 4 y MF, 30–69 y (n = 10,064)</td>
<td>DBP ≥90 mm Hg (n = 10,064)</td>
<td>Caffeinated beverage consumption: 0, >0–2, >2–4, or >4 cups/d</td>
<td>Total mortality (n = 589), cerebrovascular mortality (n = 64), other CVD mortality (n = 272)</td>
<td>Age, sex, race, body weight, initial DBP, fasting plasma glucose, total cholesterol, and marital status</td>
<td>RR of total mortality for categories of consumption: 1.0, 0.82 (0.65, 1.03), 0.82 (0.62, 1.82), and 0.90 (0.63, 1.28); RR of cerebrovascular mortality for categories of consumption: 1.0, 0.73 (0.37, 1.46), 0.61 (0.26, 1.44), and 1.30 (0.56, 3.04); RR of other CVD mortality for categories of consumption: 1.0, 0.93 (0.66, 1.30), 0.81 (0.53, 1.23), and 0.80 (0.46, 1.39)</td>
<td>Coffee consumption was associated with increased risk of cerebrovascular or other CVD mortality</td>
<td></td>
</tr>
<tr>
<td>Hakim</td>
<td>United States, 25 y M, 55–68 y (n = 8006)</td>
<td>BP ≥140/90 mm Hg (n = 499)</td>
<td>Coffee consumption: 0, 4–8, 12–16, and ≥20 oz/d</td>
<td>Thromboembolic stroke (n = 76)</td>
<td>Age, SBP, total cholesterol, triglycerides, diabetes, physical activity, and alcohol consumption</td>
<td>RR for consumption of ≥20 oz/d: 2.1 (1.2, 3.7), P-trend = 0.006 (information for other categories not available)</td>
<td>Coffee consumption was associated with increased risk of thromboembolic stroke</td>
<td></td>
</tr>
<tr>
<td>Greenberg</td>
<td>United States, 8.8 y M/F, 32–86 y (n = 1354)</td>
<td>Stage 1: BP 140–159/90–99 mm Hg (n = 512); stage 2: BP ≥160/100 mm Hg (n = 290)</td>
<td>Caffeinated beverage consumption: <1.5 and ≥1.5 cups/d</td>
<td>Heart disease mortality (n = 147)</td>
<td>Age, sex, smoking, BMI, race, physical activity, alcohol consumption, income, educational level, and American-style diet</td>
<td>RR for consumption of ≥1.5 cups/d in stage 1 hypertensive subjects: 0.62 (0.39, 0.99); RR for consumption of ≥1.5 cups/d in stage 2 hypertensive subjects: 0.81 (0.47, 1.41)</td>
<td>Coffee consumption was associated with increased heart disease mortality</td>
<td></td>
</tr>
<tr>
<td>Larson</td>
<td>Finland, 13.6 y M, 50–69 y (n = 26,556)</td>
<td>BP ≥140/90 mm Hg (number of hypertensive individuals not reported)</td>
<td>Coffee consumption: <2, 2–3, 4–5, 6–7, and ≥8 cups/d</td>
<td>Cerebral infarction (n = 1729 cases in those with SBP ≥140 mm Hg and 1455 in those with DBP ≥90 mm Hg)</td>
<td>Age, number of cigarettes smoked daily, BMI, leisure-time physical activity, alcohol intake, SBP and DBP at baseline, serum total cholesterol, serum HDL cholesterol, histories of diabetes and CHD, and tea consumption</td>
<td>RR for categories of consumption in those with SBP ≥140 mm Hg: 1.0, 0.92 (0.77, 1.10), 0.90 (0.76, 1.07), 0.79 (0.65, 0.95), and 0.76 (0.63, 0.93), P-trend = 0.001; RR categories of consumption in those with DBP ≥90 mm Hg: 1.0, 0.88 (0.72, 1.06), 0.88 (0.73, 1.06), 0.75 (0.61, 0.92), and 0.70 (0.57, 0.87), P-trend < 0.001</td>
<td>Coffee consumption was associated with lower risk of cerebral infarction</td>
<td></td>
</tr>
<tr>
<td>Greenberg</td>
<td>United States, 10.1 y M/F, ≥65 y (n = 1354)</td>
<td>BP ≥160/100 mm Hg (n = 302)</td>
<td>Coffee consumption: 0 and ≥1 cups/d</td>
<td>CHD mortality (n = 39), heart valve disease (n = 20)</td>
<td>Age, sex, smoking, BMI, physical activity, alcohol consumption, marital status, BP, history of CVD, and antihypertensive medication use</td>
<td>RR of CHD mortality for consumption of ≥1 cup/d: 0.87 (0.44, 1.72), P-trend = 0.48; RR of heart valve disease for consumption of ≥1 cup/d: 1.72 (0.41, 7.25), P-trend = 0.04</td>
<td>Coffee consumption was not associated with increased risk of CHD mortality or heart valve disease</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Reference</th>
<th>Country, duration of follow-up</th>
<th>Population data</th>
<th>BP criteria for inclusion as hypertensive</th>
<th>Exposure/categories</th>
<th>Outcome</th>
<th>Confounding factors</th>
<th>Multivariate-adjusted results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lopez-Garcia (13), 2009</td>
<td>United States, 24 y</td>
<td>F, mean age: 56 y (n = 83,076)</td>
<td>BP ≥ 140/90 mm Hg (n = 12,960)</td>
<td>Coffee consumption: <1 cup/mo, 1 cup/mo to 4 cups/wk, ≥5 cups/wk, ≥4 cups/d</td>
<td>Stroke (n = 900)</td>
<td>Age, smoking, BMI, physical activity, alcohol consumption, menopausal status, use of hormone replacement therapy, aspirin use, glycemic load, and intakes of total energy, calcium, potassium, sodium, folate, whole grain, fruit, vegetables, and fish</td>
<td>RRs for categories of coffee consumption: 1.0, 0.97 (0.76, 1.24), 0.99 (0.77, 1.24), and 1.10 (0.76, 1.58), (P)-trend = 0.53</td>
<td>Coffee consumption not associated with increased risk of stroke</td>
</tr>
<tr>
<td>Larsson (41), 2011</td>
<td>Sweden, 10.4 y</td>
<td>F, 49–83 y (n = 34,670)</td>
<td>Self-reported history of hypertension (number of hypertensive individuals not reported)</td>
<td>Coffee consumption: <1, 1–2, 3–4, and ≥5 cups/d</td>
<td>Cerebral infarction (n = 482)</td>
<td>Age, smoking status, pack-years of smoking, education, BMI, total physical activity, history of diabetes, aspirin use, family history of myocardial infarction, and intakes of total energy, alcohol, red meat, fish, fruit, and vegetables</td>
<td>RR for categories of consumption: 1.0, 0.82 (0.61, 1.11), 0.95 (0.70, 1.29), and 0.73 (0.49, 1.09), (P)-trend = 0.29</td>
<td>Coffee consumption not associated with increased risk of cerebral infarction</td>
</tr>
</tbody>
</table>

1 BP, blood pressure; CHD, coronary heart disease; CVD, cardiovascular disease; DBP, diastolic blood pressure; NA, not available; SBP, systolic blood pressure.

The results of this review have clinical implications for the study of the acute effect of coffee and caffeine on BP. First, we found no study that reported a significant increase in BP; moreover, modifying the combinations of some components of coffee—specifically decreasing HHQ and increasing CGA—produced reductions in the long-term effect of coffee on BP in hypertensive individuals. Second, we found evidence to justify avoidance of habitual coffee consumption in individuals (42), and the studies reviewed in this work in hypertensive individuals, suggest that habitual coffee consumption is not associated with increases in BP after caffeine intake. From the beginning of the study of the acute effect of coffee and caffeine on BP, our work makes some original methodological contributions to the study of the acute effect of coffee and caffeine on BP. First, we found no study that reported a significant increase in BP; moreover, modifying the combinations of some components of coffee—specifically decreasing HHQ and increasing CGA—produced reductions in the long-term effect of coffee on BP in hypertensive individuals. Second, we found evidence to justify the study of the acute effect of coffee and caffeine on BP, and this observation was allowed independently of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were considered independently for each period of observation. This allowed evaluation of the temporal course of each study, were consid...
antagonists, and β-blockers). Such evidence would make it possible to fine tune recommendations about coffee consumption in hypertensive individuals. Last, given that the studies on the association between coffee and risk of stroke found inconsistent results, further research is needed before we can rule out a deleterious effect of coffee consumption on each type of CVD.

We thank Mercedes Corrales for designing the PubMed and EMBASE searches.

The authors’ responsibilities were as follows—AEM, LML-M, FR-A, and EL-G: designed the study; AEM and EL-G: analyzed the data; AEM, LML-M, FR-A, and EL-G: wrote the manuscript; and FR-A and EL-G: had primary responsibility for the final content. All authors read and approved the final manuscript. The funders had no role in the design, implementation, analysis, or interpretation of the data. None of the authors had a conflict of interest.

REFERENCES